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Scaling laws for trace impurity confinement:
A variational approach

A. Thyagaraja and F.A. Haas
Culham Laboratory, Abingdon, Oxon, OX14 3DS, England

(Euratom/UKAEA Fusion Association)

Abstract

-A variational approach is outlined for the deduction of impurity

confinement scaling laws. Given the forms of the diffusive and convective

components to the impurity particle flu present, a variational

principle for the impurity confinement time in terms of the diffusion

time-scale and the convection parameter, which is a non-dimensional

measure of the size of the convective flux relative to the diffusive flux.

These results are very general and apply irrespective of whether the

transport fluxes are of theoretical or empirical origin. The impurity

confinement time scales exponentially with the convection parameter in

cases of practical interest. -
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1. INTRODUCTION

Experimental studies of trace impurity transport (HAWKES et al.

(1987), 14ARMAR et al. (1982) repreqpnt tvpical examples) provide a useful

way of probing tokamak plasmas. The present article is concerned with

certain general features of impurity confinement scaling. We consider a

cylindrical model of tokamak magnetic flux surfaces for simplicity. The

trace impurity number density n (r,t) is assumed to satisfy the followingI

transport equation.

an1 1 6
- - (r (r,t)) (1)

at r ar

In practice, the impurities can exist in various ionization states with

different values of Z In principle, one must then solve a series of

coupled equations of the type of Eq.(1) with sources to model the

transitions. The theory presented in this paper is applicable to this

more general case also. However, it is best understood in terms of the

simple model provided by Eq.(1).

The impurity radial flux r I(r,t) is known (both empirically and

from neo-classical theory) to take the general form,

n 
IF I(r,t) D I D(r)--- U I(r)n 1 (2)

br

The diffusivity DI(r) and the (nominally) inward convection velocity



U (r) are generally functions of plasma prooerties, Z etc but not of

nI or its derivatives. Many experimentalists adopt simple forms for

D
them, e.g. DI = D (a constant of order X e) and U = C a r where

C is a non-dimensional number 0(0) and fit the data to obtain empirical

values for D1 and C . We have given a phenomenological theory (HAAS

and THYAGARAJA, 1987) relating DI  to the anomalous plasma (electron)

thermal diffusivity Xie and UI to the Pfirsch-Schluter convection

velocity. The purpose of the p4esent paper is to deduce the confinement

scaling law for Eq.(1), given functional forms for D, and UI

profiles. The results are therefore very general and apply irrespective

of which theory (or even experiment) is used to obtain DI  and UI

2. MATHEMATICAL FORMULATION

The problem is posed thus: we assume that Equations (1) and (2)

apply together with the following conditions

(1) DI £0 1(a) f D(r/a) f D(1) - 1, f D(r/a) > 0.

(2) U = U I(a) f u(r/a) f U(0) = 0, f u(1) = 1

U I(a) ) 0, f u(r/a) > 0.

(3) n I(a,t) - 0 and r I(0,t) = 0

(4) n I(r,0) - F initial(r)
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The first two conditions specify the nature of the transport

co-efficients. It is usually the case that the profile functions

f D(r/a), f u(r/a) are monotonic, increasing. Conditions (3) and (4) are

the boundary and initial conditions respectively. For experimental

applications, it is useful to regard F initial(r) as a function

concentrated near r = a.

Given the above data, the initial value problem for Eq.(1) can be

solved numerically in general. In special cases, analytic solutions may

also be constructed in terms of known functions. To discuss the

properties of n I(r,t) we introduce two parameters.

Let a2ff 2 (3)
D I(a)

a UiCa)

and C 1 (4)
D I(a)

Clearly 'dill is a measure of the impurity confinement time (to be

defined precisely) in the absence of convection, while C is aa

dimensxonless measure of the convective flux relative to the diffusion

flux. C is usually referred to as the Peclet number in fluid mechanics
a

(JERRARD and McNEILL, 1986) though it is convenient for our purposes to

call it the convection parameter. From n (r,t) we may form the line

average

a
N(t) = f n (r,t) dr)

0 a
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A plot of this (Fig. 1) shows a very sharp rise followed by a nearly

exponential decay in time. The experimental brightness function is

related to N(t), though not simply. However, the decay time T. is aimp

measure of the impurity confinement time.

From dimensional analysis, it is obvious that the following "scaling

law" must hold.

timp/rdiff = F(Ca) (6)

Fig. 2 shows the results of a set of numerical solutions of Eq.(1) for

typical forms of fDI fuI F initial over a range of Ca . F(Ca ) can be

written (for C 0) F(C ) ACa exp[BC0}. The constants A. B, a, 0
a a a a

depend only on fD' fu and not on Finitial. It is noteworthy that

F(C ) is exponentially dependent on C whereas Eq.(1) hasa a

co-efficients UI which only depend on Ca  linearly. This is a direct

result of the cancellation between the diffusive and inward convective

fluxes.

3. ANALYTIC THEORY AND VARIATIONAL PRINCIPLE FOR THE SCALING FUNCTION

The above results can be understood quite simply by the application

of the following theorem.

Theorem:

Consider the eigen-value problem defined by

-4-



r dr dr

together with the boundary conditions, - = 0 at r = 0, = 0 at r
dr

= a.

a. The eigen-values {} 1  form a real, positive, monotonically

increasing unbounded sequence, ie, 0 < X1 < X2 < ... < X n ....

b. The corresponding eigenfunctions 0 may be written in the formn

= p(r) V (r)
n n

r U (r)
where p(r) E exp{ f dr} and Vn satisfy

0 Di(r)n

I (r DIp - (8)

r dr dr

a
and are normalised by 1 = f p(r)V 2 rdr.

0 n
a

Clearly, 6 = f p(r)VnV mrdr holds.
0

c. The solution to Eq.(1) is given by the eigenvalue expansion

- -X t
nI(r,t) = e A n  n(r) (9)

n
=

1I

where F initia(r) - A Tn(r) (10)
n
=
n n n



a
with, An = f initial V rd (11)

d. As t . , n (r,t) = e 'it {A1I 1 (r) + O(e-('2-)t)}

1

and -. .
imp x

e. The eigen-value X1  is given by the Rayleigh-Ritz principle

a 2
f D I(r) p(r) - rdr

X= Min { 0 dr (12)
V(r) a

f p(r) V2 rdr
0

Where the minimum is taken over real, continuously differentiable

functions s.t- 0, r = 0; V = 0, r = a
dr

Proof:

r U
The substitution D E p(r)V with p(r) = exp{- f dr} converts

0 D
I

(7) to the self-adjoint eiqen-value problem (the boundary conditions are

unaffected)

1id dV1 -(r DiP -) = - x P V (13)

r dr dr

dV

-=0 at r = 0 and V = 0 at r =a . The statements a, b, c, d
dr

-6--mI I •I i mmnnm,



and e follow from the standard theory giveninteel-odf etso

COODINGTON and LEVINSON (1955) and COURANT and HILBERr (1953).

We now apply the variational principle to deduce F(C ) for an
a

experimentally interesting case. The point of this application is this;

if we are only interested in F(C a. and not in n I(r,t), we need not

solve either Eq.(1) or the eigenvalue problem. We simply take a suitable

trial function V and evaluate Xi approximately by calculating the

Rayleigh-quotient

Thus, we take f D 1 and fu = (r/a). Putting x = r/a,

p = e 2 a

1- lcx 2
f e 2 a (1- x dx

Min 0 dx
d~tiff =V(x)1 1 CX

f e 2  a V2 xdx
0

A trivial case occurs when C a= 0. In thlis case p E 1 and Eq.(8) is

aa

solved exactly by cDn=An30 an n whr an iste t,

zero of J (A is a normalisation constant).
n

Thus, ip = F(O) - 0.172

t
diff1
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Putting V - (1-x
2
) and evaluating the Rayleigh-quotient we get,

F(O) = 0.16
6

In the general case, we consider the trial function (other choices are

C

possible), V -2 (1 - expfI (x
2
-1)1 which satisfies the boundary

c 2
a

conditions and reduces to the previous one in the limit Ca - 0. The

Rayleigh quotient is readily evaluated in closed form. We then obtain the

result

z+ CImp ~ 1 a
R(-)I

Tdiff 2

where,

R(x) E 4xe
- 2

x j(x-
1
)ex + 1f (14)

{1 - 2xeX - e
- 2 x

C

For large C 1 exp

C Ca
2  2

2

In Fig.3, we have plotted the points obtained by a fine-grid numerical

solution of Eq.(1) and the curve given by Eq.(14) for logUF(Ca).
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4. DISCUSSION AND CONCLUSIONS:

The above results demonstrate that for given profiles f. and f u

the confinement time Trm is determined by two parameters. These areimp

a
2

the diffusion time-scale Tdif -a and the convection parameter,
U (a)

a U (a)

C = __ In a sense, diffusion 'always wins' no matter how largea
DI(a)

Ca  is. This is due to the fact that X, > 0 however large Ca  is.

Clearly this is an effect of a finite domain and the condition

n (a,t) = 0. However, if C > 5 say, the exponential dependence onI a

Ca asserts itself and Timp can be very much larger than Tdiff* The

calculations also show that an increase or decrease of T. can be
imp

mediated solely by the variation of C a without 'diff (ie D I ) itself

changing.

Experimental results on trace impurity transport can be simply

interpreted in terms of the above model. In Alcator C for example,

assu;.ing DI to be anomalous (of order X ie) and U I to be the

Pfirsch-Schluter convection, we (HAAS and THYAGARAJA, 1987) have been able

to explain many features of the results obtained by Marmar et al. In

contrast, DITE (AXON et al, 1987; HAWKES et al, 1987) can operate in

apparently two regimes depending on the plasma density rate of increase.

This could be pictured as being due to the variation of C • Pursuing
a

this idea further, our phenomenological model predicted a strong

degradation of imp,;rity confinement due to auxiliary heating. This effect

is a consequence of the general form of the scaling function F and the

decrease of C suggested by the physics of the model. The methods of
a



this paper may be applicable more generally to plasma confinement and to

impurity confinement with sources.

The form of the scaling function F cannot be deduced without

reference to the boundary value problem. In particular, no scaling or

group theoretic analysis of Eq.(1) can ever lead to the actual form taken

by F • This example indicates that scaling arguments based on invariance

principles alone should be treated with caution. However, it is known

from standard eigenvalue theory that since the co-efficients of Eq.(S) are

analytic functions of C (through p ), this must also be the case for
a

the eigen-values. Thus, F(C ) must be an analytic (in generala

transcendental) function of C . This is in contrast to nonlinear
a

problems (eg plasma heat transport) where F(Ca) can depend

discontinuously on C (i.e., exhibit bifurcations). Of course, Tra di ff

and C themselves could change discontinuously in an experiment.
a

Figure Captions:

Fig. 1. Typical calculated variation of N(t) with time using Eq.(1)

and Eq.(5).

Fig. 2. Calculated variation of imp/diff as a function of Ca for a

specific choice of fD and fU"

Fig. 3. Comparison between the results of numerical solutions of Eq.(1)

(shown by open circles) and the variational formula Eq.(14)

Tm
(solid curve). Log0 ip is plotted against Ca.

Udiff

- 10 -



5. REFERENCES

CODDINGTON, E.A. and LEVINSON, N. (1955) McGRAW-HILL, London, Ch.7,

Theory of Ordinary Differential Equations.

COURANT, R. and HILBERT, D. (1953) Methods of Mathematical Physics,

Interscience, New York. Vol.1, Ch.V.

HAAS, F.A. and THYAGARAJA, A. (1987) to be published in Plasma

Physics.

HAWKES, et al., (1987) 14th European Conf. on Controlled Fusion and

Plasma Physics, Madrid.

JERRARD, H.G. and McNEILL, D.B. (1986) A dictionary of Scientific

Units, Chapman and Hall, London.

MARMAR, E.S., et al., (1982) Nuclear Fusion, 22, No.12, 1567.

- 11 -



1 3

I 2

1.0

09

0-8-

S07

06-

0 4

0o 

-

03-

0-2

0 1

0*01L 
L -0 10 20 30 40 50 60 70 80 90 100

t(MS)

Fig. I Typical calculated variation of N(t) with time using Eq.(l)
and Eq.(5).

120

110
100

so0

80

70

60

50

40

30

20

10

0
0 12 34.5 6 7 8 91011i1213 1415

CaI
Fig. 2 Calculated variation of r,l T dif as a function of C, for a
specific choice of fD and ft:.



2.0 1

1.6

1.2

0.8=
IL %0

0. 0

-0-1-

-0.8

0 2 4 6 8 10 12 14 16 18 20

Co
Fig. 3 Comparison between the results of numerical solutions of
Eq.(]) (shown by open circles) and the variational formula Eq.(14)

(solid curve). Logio Tim, is plotted against Ca.
T
diff



DATE

FILME D


